

Mission Requirements and Assumptions

Mission Requirements Overview

Two coaligned Telescope systems to cover the 0.25-40keV band:

- Spectroscopy X-ray Telescope(SXT) from 0.25 to 10.0keV
 - Microcalorimeter array (or equivalent) with 2eV resolution
 - Reflection grating/CCD array (or equivalent) with resolution > 300
 - for energies below 1keV
- Hard X-ray Telescope(HXT) from 10 to 40 keV
 - Small radius grazing incidence optics with multilayer coatings
 - CdZnTe imaging detector (or equivalent)

Science instrumentation configured into separate optics and focal plane assemblies. Optical bench provides stable structure between the two.

Science Instrumentation Concept

SXT/Grating Optics Subassembly		CCD Detector Subassembly		
OPTICS ASSEMBLY	Optical Bench	Microcalorimeter Detector and Cryocooler Subassembly		
HXT Optics		FOCAL PLANE ASSEMBLY		
Subassemblies		HXT Detector Subassemblies		

Top Level Mission Performance Requirements

Effective Area - Mission Total 15,000 cm² @1keV (30,000 cm² geometric area) - SXT

6,000 cm² @ 6.4 keV - SXT 1,500 cm² @ 40 keV - HXT

Telescope Angular Resolution 15" HPD from 0.25 to 10 keV (SXT)

1' above 10keV (HXT)

Minimum Spectral Resolving Power 300 from 0.25 keV to 10.0 keV

3000 at 6 keV 10 at 40 keV

Band Pass 0.25 to 40 keV

Minimum Diameter Field of View 2.5'<10 keV

8'>10 keV

Redundancy/Reliability No one failure to result in loss of more than

33% of the mission science

Mission Life 3 years minimum at full performance

5 years goal

Target Viewing Constraints

- o The effective area (EA) specified above assumes viewing efficiency(average per orbit) > 90% over the mission life. For orbits with lower viewing efficiencies, the total mission effective area (SXT+ HXT) must increase proportionately, or the duration of mission must increase to compensate for the loss in viewing efficiency (TBR).
- The full EA must available for use on the same target at the same time.
- Observations of a single target will generally be from 2 to 48 hours in duration.
- Targets will be distributed throughout the entire celestial sphere.
- We require that 90% of the sky be accessible at least twice per year, with viewing windows no shorter than two weeks in duration; and that 100% of the sky be available at least once per year with a minimum viewing window of one week.
- Mission orbits and attitude control shall be adjusted to provide the above.

SXT Options and Geometry

NOTE: Designs for 1.3m SXT should be based on 1.3m LONG option(1m optic length, dim F).

SXT Configuration Data

<u>Parameter</u>	<u>Long 1.3m</u>	<u>1.8m</u>
SXT Optics Subassembly		
Number of shells	60	90
Mass estimates(kg)		
Optics	250	824
Structure	103	200
Thermal HW	30	60
Contamination covers	14	30
Apertures/baffles	15	30
Reflection Gratings	50	70
Total	462	1214
Heater Power(watts)	150(TBR)	250(TBR)
Operating Temperature	20 C ± 1 C	$20 C \pm 1 C$
Optics radial gradient	< 0.5C	< 0.5C
Optics axial gradient	< 1.0C	< 1.0C
Grating axial gradient	< 1.0C	< 1.0C

CCD Configuration Data

 A CCD detector (or equivalent) is used as a readout device for the reflection grating spectrometer spectra (one/SXT). The positioning of the CCD is shown in the SXT Options and Geometry slide.

 CCD configuration data: 	Envelope(mm)	Mass(kg)	
Detector assembly:	100 x 100 x 400	20	
Array length(1.3m optic):	280		
Array length(1.8m optic):	310		
Electronics box 1:	100 x 100 x 100	8	
Electronics box 2:	100 x 100 x 100	8	
Instrument Processor assembly:	200 x 400 x 100	12	
 CCD operational temperature: 	-90C		

Total power: 40 watts

Microcalorimeter Configuration Data

 A microcalorimeter detector (or equivalent) will be located at the SXT focus (one/SXT).

Microcalorimeter configuration data:

• Operating Temperature: 0.065 +/- 0.002 deg K (TBR)

• Total mass: 30 kg

Total power: 100 watts

• Envelope: TBD

Microcalorimeter REFERENCE data:

• Focal Plane: 32 x 32 pixels,

each 200 x 200 microns

Detector FOV:
 2.5 arcmin x 2.5 arcmin (minimum)

HXT Optics Configurations

- The high energy imaging capability is provided by an HXT optics module coupled to a CdZnTe imaging detector (or equivalent).
- Three HXT optics module options are defined

	Optic	Assembly Dims	Focal	Optic FOV	Optics per	Mass
	Dia(mm)	Dia x Length(mm)	Length(m)	(arcmin)	mission	(kg)
1 - Base	280	330 x 200	9.0	>8	18	26
2	400	450 x 300	10.5	>8	12	55
3	330	380 x 300	10.5	>8	15	38

HXT Detector Configuration Data

HXT Detector configuration data:

• Operating temperature: -40C

• Mass: 17 kg

• Focal plane dimensions: 25mm x 25mm

Envelope dimensions:

Pointing and Data Requirements

Pointing

Pointing Knowledge 2 arc sec, pitch and yaw

30 arc sec, roll

Pointing Control 30 arc sec, pitch and yaw

60 arc sec, roll

Pointing Stability 0.5 arc sec/sec (TBR), pitch and yaw

5 arc sec/sec, roll

Safety Pointing Constraints \geq 45 deg from Sun

Science Pointing Constraints \geq 45 deg from Sun

≥ 30 deg from earth limb and moon

Data

Science and Instrument Engineering Data Rate

(Mission Total Daily Average) 192 kbps

Peak Science Data Rate and

mission peak data rate: 5460 kbps(sum of all satellites)

Stray Light, Stray X-Ray, and Radiation Requirements

Stray Light

Stray Light on CCD < 1e9 photons/cm2/sec

(in 1000 to 10,000 angstrom band)

Stray Light on microcalorimeter TBD

Stray Light on HXT detectors no limit

Stray X-rays

Unfocused X-rays Protection equivalent to

0.005" tantalum over solid

angles outside SXT FOV

Radiation

Radiation – Total Dose TBD

Radiation – Galactic Cosmic Environment TBD

NOTE: Instruments cannot operate in South Atlantic Anomaly